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An analysis of the atmospheric refraction corrections at the DSS-13 34-m diame-

ter beam waveguide antenna for the period covering July through December 1990 is

presented. The current DSN atmospheric refraction model and its sensitivity with

respect to sensor accuracy are reviewed. Refraction corrections based on actual at-

mospheric parameters are compared with the DSS-13 station default corrections for

the six-month period. Average blind-pointing improvement during the worst month

would have amounted to 5 mdeg at 10 deg elevation using actual surface weather

values. This would have resulted in an average gain improvement of 1.1 dB.

I. Introduction

The bending of radio waves as they pass obliquely

through the atmosphere can produce large pointing er-

rors. Currently in the DSN, a refraction model (referred

to here as the Lanyi model 1 is used to compute a correc-

tion which reduces antenna beam-pointing errors in ele-

vation. The inputs to the refraction model are predicted

elevation angle, surface atmospheric pressure, surface tem-

perature, and surface relative humidity. The use of actual

weather parameter inputs from antenna station instrumen-

tation, instead of from default values, will significantly

improve blind-pointing accuracy. This article investigates

the magnitude of the pointing improvement by analyzing

1 G. Lanyi, "Atmospheric Refraction Corrections to Antenna Point-
ing at 1 Millidegree Accuracy," JPL Interoffice Memorandum
335.3-89-026, Jet Propulsion Laboratory, Pasadena, California,
March 24, 1989.

real atmospheric conditions at the DSS-13 beam waveguide

(BWG) antenna.

During the phase 1 testing period [1] at DSS 13, gain

and pointing calibrations were conducted from June 1990

through January 1991. Throughout this period the Lanyi

refraction model was used to compute and apply refraction

corrections based on station default weather parameters

coded in the Antenna Controller Subassembly (ACS). Sta-

tion weather instrumentation readings, not interfaced with

the antenna-pointing system at the time, were also logged

at ten-minute intervals. These atmospheric readings al-

low analysis and comparison of actual weather-based re-

fraction corrections with the fixed-parameter corrections

during the experiment period.

It was anticipated that actual beam-pointing error mea-

surements made on stellar radio sources during the phase 1
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testing would enable assessment of the reduction of actual

elevation pointing errors. Unfortunately, only a limited
number of measurements were made at the lower elevation

angles, and they appeared to be of only marginal quality.

Due to the nonrepeatable nature and poor quality of these

pointing measurements, they were deemed unreliable for
the purpose of analysis. In this article, estimated improve-

ment in the refraction pointing error correction at DSS

13 is based strictly on the deviation of the logged meteo-

rological parameters (pressure, temperature, and relative

humidity) from the default DSS-13 weather parameters.

The data analysis to be presented will span the real-

time weather input measurement period between July 1

and December 31, 1990. The data acquisition and reduc-

tion techniques are described. The Lanyi refraction model,

along with its sensitivity to input weather parameters, is

reviewed. It is shown that the magnitude of the refrac-

tion pointing error correction based on actual atmospheric

parameters deviates significantly from the default, on the

average, as the elevation tracking angle decreases. The Ka-

band gain loss corresponding to deviations in the correc-

tions emphasizes the need for accurate, real-time weather

inputs to the DSN refraction correction algorithm.

AEL = f(P, T, RH, EL) (1)

where

AEL = change in elevation pointing

P - surface pressure

T = surface temperature

RH = surface relative humidity

EL = predicted elevation angle

The DSN default surface weather parameters, which
were used at DSS 13 are

P = 901.09 mbar

T = 22.07 deg C

RH = 31.57 percent

Figure 1 shows the magnitude of the refraction correc-

tions at DSS 13 as a function of elevation angle, using the
default weather parameters.

II. Refraction Correction in the DSN

A. Background

Until 1990, the DSN used the Berman-Rockwell refrac-

tion model defined in [2,3]. In 1990, the Lanyi model was
implemented in the DSN, as well as at the DSS-13 34-m

BWG antenna. A detailed comparison of the models can

be obtained through the references. The main motiva-

tion for implementing the Lanyi model was its estimated
improvement in accuracy, especially at the low-elevation

angles. The estimated Lanyi model accuracy is stated to

be better than 0.5 mdeg at elevation angles greater than

6 deg, assuming that accurate and current measurements
of the atmosphere are provided to the antenna controller.
In terms of the current DSN Media Calibration Subsys-

tem (DMD) weather instrumentation specifications, this
could produce an error of 1.5 to 4.0 mdeg at 6 deg ele-

vation for average and extreme DSN water vapor content,

respectively. Such pointing errors may seem small but are

significant when contemplating error budgets for Ka-band

beamwidths (17 mdeg for 34-m antennas and 9 mdeg for

70-m antennas).

B. The Lanyi Refraction Model

The Lanyi refraction model has the basic functional
form of

Ill. DSS-13 Surface Atmosphere Measure-
ments

A. Weather Instrumentation and Measurement

Analysis

Daily records of surface atmospheric conditions at
DSS 13 were collected from July through December 1990.

These time-tagged measurements provide the basis for

computation of actual refraction corrections, which were
used for comparison with the default corrections. It is thus

necessary to try to assess the quality of the measurements.

Two sensors for each weather parameter were opera-
tional during the period of interest, and their observations

were recorded every 10 rain by the station weather data
acquisition computer. The accuracy specifications of the
instruments are stated to be

Pressure: 800 to 1100 mbar, -4-0.3 mbar

Temperature: -50 to +80 deg C, -4-0.1 deg C

Relative humidity: 0 to 80 percent, zl:2 percent, and

80 to 100 percent, -/-3 percent

The differences between the two sensors for each measure-

ment (25,329 data points) were computed. The average
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difference between the two sensors for all days was com-

puted to be

Pressure: 0.0493 mbar (a = 0.0791 mbar)

Temperature: 0.0710 deg C (a = 0.1428 deg C)

Relative humidity: 3.9 percent (_ = 3.7 percent)

Both the pressure and temperature sensor pairs agreed ex-

tremely well during this period, while at least one relative

humidity probe appeared to be biased. The differences
also display large variations. To illustrate the variability

in the humidity sensors, Fig. 2 shows the average daily
difference between the humidity observations for days 267

through 321. The readings from sensor 2 are always larger

than those registered by sensor 1. The true relative hu-

midity value may lie between the sensor readings, or one

or both of the sensors may be biased high or low. These

discrepancies in humidity can map into significant differ-

ences in refraction correction, especially at low elevation

angles. To minimize the impact on the refraction correc-

tion analysis, the atmospheric measurements were filtered

in the following manner: Points were eliminated when the
difference between the two measurements from each of the

sensors was greater than twice the stated DSS-13 accuracy

specification. Approximately twenty percent of the data

points were removed in this manner.

B. Sensor Error Propagation

As noted, uncertainties in all three surface weather

measurements will propagate into errors in the computed

refraction corrections. To quantify the correction degra-

dation, the sum of the squares of the partial derivatives of

the refraction model with respect to each input parameter
were computed.

A first-order approximation to the Lanyi model, which

is adequate for sensitivity analysis, is given by

AEL = Xo - Ztotl (Rsin_(EL))

tan(EL)
(2)

where

Xo = Xary + Xwet = total surface refractivity

Ztot = Za,.v + Zwet = total zenith path delay

R = Earth radius

EL = the uncorrected elevation angle

The dry and wet surface refractivities and dry and wet
zenith path delays can be determined from surface mea-

surements of pressure, temperature, and relative humidity.
The DSS-13 weather instrumentation specifications were

then input as uncertainties and yielded an error of 0.71

mdeg in the computed refraction correction at 10 deg ele-

vation. Thus, the sensor error propagation would not be a

major problem in this current study if all the sensors were

within their accuracy limits.

Figure 3 shows the DSS-13 rss refraction correction

error at 10 deg elevation due to relative humidity un-
certainty, using the default weather parameters and the

given pressure and temperature sensor specifications. It
is seen that when the sensor error increases above 3 per-

cent, refraction error correction on the millidegree level is
unachievable.

IV. Refraction Correction Analysis

A. Computed Refraction Corrections

Refraction corrections were computed at 1-hr intervals

for the atmospheric measurement set spanning the six

months (3446 points). In order to examine the variability

of the computed corrections over this period, the extreme

ranges of the sensor readings are considered. By setting

two of the three input variables (pressure, temperature,
and relative humidity) to the DSS-13 default values and

entering the extreme points listed below into the refraction

model, the correction ranges listed in Table 1, in millide-

grees, are computed.

As seen in that table, the change in refraction correction

due to relative humidity is about 17 times greater than
that due to pressure and about 3 times greater than that

due to temperature.

B. Effect on Gain

The absolute differences between the default refraction

corrections and those corresponding to actual weather pa-

rameters were computed. The resultant values are as-
sumed to be improvements in the beam-pointing accuracy

for blind pointing if the real-time surface weather obser-
vations were used in the refraction correction for the six-

month period. For all the hour-interval atmospheric mea-

surements, the absolute difference is computed at elevation

increments of 5 deg. Figure 4 illustrates the differences for
the month of October 1990, which had the highest aver-

age refraction difference from the default refraction values.
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Note that for this particular month, very few actual refrac-

tion corrections equaled the default corrections (absolute
difference = 0). Thus, rarely would good blind pointing be

achieved, and the average pointing errors at low elevation

angles would be rather large (4.8 millidegrees). Expected

beam-pointing improvement (using real weather inputs)

increases significantly as the elevation angle is decreased.

To summarize the whole six-month period, statistics

were computed for the entire data set at 5-deg increments.

Figure 5 shows the means and standard deviations of the

absolute differences. At 10 deg elevation, the refraction
pointing error should, on the average, be reduced by 4

mdeg, with a 2.4-mdeg 1-a variation. The expected DSS-

13 Ka-band gain degradation corresponding to the average
differences is shown in Fig. 6. X-band gain loss would be

less than 0.1 dB. The large magnitude of the average gain
loss at the lower elevations stresses the need for accurate,

real-time weather inputs for refraction correction during

Ka-band tracking operations.

Figure 7 shows the means of the absolute correction

differences for the months of August and October, when
the smallest and largest average differences were observed,

respectively. Figure 8 illustrates the corresponding Ka-

band gain loss. The plots indicate that on the average,

the DSS-13 default weather parameters matched the ac-

tual atmospheric conditions best in August and worst in
October.

VoConclusions

An analysis of the atmospheric refraction correction at

the DSS-13 BWG antenna for the period covering July
through December 1990 has been presented. The Lanyi

refraction model and its sensitivity with respect to sen-

sor error were reviewed. It was shown that the present

specifications on the DSS-13 weather instrumentation are

sufficient to provide submillidegree refraction correction,
however, performance will sharply degrade when the rela-

tive humidity sensors fail to meet their specified accuracy.

Refraction corrections based on actual atmospheric pa-
rameters from the six-month period were computed and

compared with the DSS-13 station default corrections.

The average worst-month differences between the correc-

tions was 5 mdeg at 10 deg elevation (Fig. 7). The cor-

responding average Ka-band gain loss expected using the

DSS-13 default weather parameters during this period was

thus 1.1 dB at that elevation (Fig. 8). The X-band gain

loss would be approximately 0.1 dB. This significant gain
loss mandates the need for accurate, real-time weather-

parameter-based refraction correction for future Ka-band

tracking operations.
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Table 1. Effect of measured weather extremes on calculated refraction correction.

Parameter Refraction correction, mdeg

lO-deg elevation 20-deg elevation 30-deg elevation

Pressure, 883 to 907 mbar

Temperature, -9.7 to 37.7 deg C

Relative humidity, 4 to 99 percent

83.6-85.6 41.7--42.7 26.5-27.1

84.3-95.1 42.1-47.4 26.7--30.1

75.2 - 109.7 37.6- 54.6 23.9- 34.6
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Fig. 1. Lanyi angular refraction correction model for DSS-13 default atmospheric parameters.
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refraction corrections during July-December 1990.
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